

SLC(University of Delhi) Shyam Lal College

Programme Specific Outcomes and Course Outcomes B.SC (Phy. Sc) Chemistry

Shyam Lal College(University of Delhi)

Department of Chemistry

Programme Outcomes and Course Outcomes

Programme Outcomes

Programme	Programme Outcomes
Programme B.Sc.(Physical Sciences) with Chemistry	Programme Outcomes PO-1: An integral part of chemistry curriculum is problem solving. The student will be equipped to solve problems of numerical, synthetic and analytical nature that are best approached with critical thinking. PO-2: The student will be able to draw logical conclusions based on a group of observations, facts and rules. PO-3: The student is inquisitive about processes and phenomena happening during experiments in laboratories and seeks answers through the research path. PO-4: Students are aware of the importance of working with safety and consciousness in laboratory and actively seeks information about health and environmental safety of chemicals that are used in the laboratories and follows protocols for their safe disposal.

Course Outcomes

Course Name	Course Outcomes	Methodology to Achieve the Specific Outcomes
Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons	CO1: Solve the conceptual questions using the knowledge gained by studying the quantum mechanical model of the atom, quantum numbers, electronic configuration, radial and angular distribution curves, shapes of s, p, and d orbitals, and periodicity in atomic radii, ionic radii, ionization energy and electron affinity of	 Use of 3D models to visualize the organic molecules in a three dimensional space. Blended mode of teaching with flip classroom approach along with traditional chalk and blackboard method, Video lectures from SWAYAM and NPTEL

elements.	4.	Use of Vi
CO2: Draw the plausible structures and geometries of molecules using radius ratio rules, VSEPR theory and MO diagrams (homo- & heteronuclear diatomic molecules). CO3: Understand and explain the differential behavior of organic compounds based on fundamental concepts learnt. CO4: Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved.	5.6.7.	Correlation with demo experiment Laboratory Assessment continuous including assignment presentation test.
CO5: Learn and identify many		examinatio voce.
1		, 000.

including

addition

substitution,

organic reaction mechanisms

and aromatic substitution.

free

radical

electrophilic electrophilic

Semester 2

Course Name	Course Outcomes	Methodology to Achieve the
		Specific Outcomes
Chemical Energetics,	CO1: Understand the laws of	1. Use of 3D models to
Equilibria and Functional	thermodynamics,	visualize the organic
Group Organic	thermochemistry and equilibria.	molecules in a three
Chemistry-I	CO2: Understand concept of pH	dimensional space.
	and its effect on the various	2. Blended mode of teaching
	physical and chemical properties	with flip classroom
	of the compounds.	approach along with
	CO3: Use the concepts learnt to	traditional chalk and black
	predict feasibility of chemical	board method.
	reactions and to study the	3. Video lecture from
	behavior of reactions in	SWAYAYAM and NPTEL.
	equilibrium.	4. Use of virtual labs.
	CO4: Understand the	5. Correlation of concepts
	fundamentals of functional	with demonstration and
	group chemistry through the	experiments in laboratory. 6. Assessment based upon
	study of methods of preparation,	6. Assessment based upon continuous evaluation
	properties and chemical	
	reactions with underlying	including quizzes, assignments projects,
	mechanism.	presentations, and class test.
	CO5: Use concepts learnt to	7. In practical, assessment will

irtual Labs

- on of concepts nonstration and nts
- nt based upon evaluation quizzes, nts projects, ons, and class
- cal, assessment done based on is evaluation, in the ice nt on the date of on and viva voce.

understand stereochemistry of a	be done based on
reaction and predict the reaction	continuous evaluation,
outcome	performance in the
CO6: Design newer synthetic	experiment on the date of
routes for various organic	examination and viva voce.
compounds.	

Course Name		Course Outcomes	Methodology to Achieve the Specific Outcomes	
Solutions, Phase Equiconductance, Electrochemistry Functional Group Chemistry-II	and	different types of binary solutions-miscible, partially miscible and immiscible along with their applications. CO2: Explain the thermodynamic aspects of equilibria between phases and draw phase diagrams of simple one component and two component systems. CO3: Explain the factors that affect conductance, migration of ions and application of conductance measurement. CO4: Understand different types of galvanic cells, their Nernst equations, and measurement of emf, calculations of thermodynamic properties and other parameters from the emf measurements. CO5: Understand and demonstrate how the structure of biomolecules determines their chemical properties, reactivity and biological uses. CO6: Design newer synthetic routes for various organic compounds.	1. Use of 3D models to visualize the organic molecules in a three dimensional space. 2. Blended mode of teaching with flip classroom approach along with traditional chalk and black board method 3. Video lectures from SWAYAM and NPTEL 4. Use of Virtual Labs 5. Correlation of concepts with demonstration and experiments in Laboratory 6. Assessment based upon continuous evaluation including quizzes, assignments projects, presentations, and class test. 7. In Practical, assessment will be done based on continuous evaluation, performance in the experiment on the date of examination and viva voce.	

Semester 4

Course Name	Course outcomes	Methodology to Achieve the
		Specific Outcomes
Chemistry of s- and p-Block Elements, States of Matter and Chemical Kinetics	CO1: Understand the chemistry and applications of s- and p-block elements. CO2: Derive ideal gas law from kinetic theory of gases and explain why the real gases deviate from ideal behavior. CO3: Explain Maxwell-Boltzmann distribution, critical constants and viscosity of gases. CO4: Explain the properties of liquids especially surface tension and viscosity. CO5: Explain symmetry elements, crystal structure specially NaCl, KCl and CsCl CO6: Define rate of reactions and the factors that affect the rates of reaction. CO7: Understand the concept of rate laws e.g., order, molecularity, half-life and their determination CO8: Learn about various theories of reaction rates and how these account for experimental observations.	1. Use of 3D models to visualize the organic molecules in a three dimensional space. 2. Blended mode of teaching with flip classroom approach along with traditional chalk and black board method 3. Video lectures from SWAYAM and NPTEL 4. Use of Virtual Labs 5. Correlation of concepts with demonstration and experiments in Laboratory 6. Assessment based upon continuous evaluation including quizzes, assignments projects, presentations, and class test. 7. In Practical, assessment will be done based on continuous evaluation, performance in the experiment on the date of examination and viva voce.

Course Name	Course Outcomes	Methodology to Achieve the
		Specific Outcomes
DSE-1: Chemistry of d-Block	CO1: Understand chemistry of	1. Use of 3D models to
Elements, Quantum	d and f block elements, Latimer	visualize the organic
Chemistry and Spectroscopy	diagrams, properties of	molecules in a three
	coordination compounds and	dimensional space.
	VBT and CFT for bonding in	2. Blended mode of
	coordination compounds	teaching with flip
		classroom approach

CO2:	Understa	ind	basic
			ıantum
mechani	cs: opera	itors,	eigen
,		prob	ability
distribut	ions.		
CO3: U	nderstand a	and use	e basic
concepts	of microv	vave,]	IR and
UV-VIS	spectro	scopy	for
	principle mechani values, distribut CO3: Us concepts	principles of mechanics: operavalues, averages, distributions. CO3: Understand a concepts of microv	mechanics: operators, values, averages, probdistributions. CO3: Understand and use concepts of microwave,

interpretation of spectra. **CO4:** Explain Lambert-Beer's law, quantum efficiency and photochemical processes.

- along with traditional chalk and black board method
- 3. Video lectures from SWAYAM and NPTEL
- 4. Use of Virtual Labs
- 5. Correlation of concepts with demonstration and experiments in Laboratory
- 6. Assessment based upon continuous evaluation including quizzes, assignments projects, presentations, and class test.
- 7. In Practical, assessment will be done based on continuous evaluation, performance in the experiment on the date of examination and viva voce.

Course Name	Course outcomes	Methodology to Achieve the
		Specific Outcomes
DSE-2: Organometallics,	CO1: Understand the chemistry	1. Use of 3D models to
Bioinorganic Chemistry,	and applications of 3d elements	visualize the organic
Polynuclear Hydrocarbons	including their oxidation states	molecules in a three
and UV, IR Spectroscopy	and important properties of the	dimensional space.
	familiar compounds potassium	2. Blended mode of
	dichromate, potassium	teaching with flip
	permanganate and potassium	classroom approach
	ferrocyanide	along with traditional
	CO2: Use IR data to explain	chalk and black board
	the extent of back bonding in	method
	carbonyl complexes	3. Video lectures from
	CO3: Get a general idea of	SWAYAM and NPTEL
	toxicity of metal ions through	4. Use of Virtual Labs
	the study of Hg2+ and Cd2+ in	5. Correlation of concepts with demonstration and
	the physiological system	experiments in
	CO4: Understand the	Laboratory
	fundamentals of functional	6. Assessment based upon
	group chemistry, polynuclear	continuous evaluation
	hydrocarbons and heterocyclic	including quizzes,
	compounds through the study	assignments projects,

CO5: Gain insight into the basic fundamental principles of IR and UV-Vis spectroscopic techniques. CO6: Use basic theoretical principles underlying UV-visible and IR spectroscopy as a tool for functional group identification in organic molecules.	nent on the date of
---	---------------------

Skill Enhancement Course

Course Name	Course outcomes	Methodology to Achieve the
		Specific Outcomes
Green Methods in Chemistry	co1: Get idea of toxicology, environmental law, energy and the environment co2: Think to design and develop materials and processes that reduce the use and generation of hazardous substances in industry. co3: Think of chemical methods for recovering metals from used electronics materials. co4: Get ideas of innovative approaches to environmental and societal challenges. co5: Know how chemicals can have an adverse/potentially damaging effect on human and vegetation. co6: Critically analyse the existing traditional chemical pathways and processes and creatively think about bringing environmentally benign reformations in these protocols. co7: Convert biomass into valuable chemicals through green technologies.	 Some motivating short movies in green chemistry especially in bio mimicry Blended mode of teaching with flip classroom approach along with traditional chalk and black board method Video lectures from SWAYAM and NPTEL Use of Virtual Labs Correlation of concepts with demonstration and experiments in Laboratory Assessment based upon continuous evaluation including quizzes, assignments projects, presentations, and class test. In Practical, assessment will be done based on continuous evaluation, performance in the experiment on the date of examination and viva

	8.	voce. Visit	to	a	green	
		chemistry lab.				